Host-diet-gut microbiome interactions influence human energy balance: a randomized clinical trial.

Nature communications. 2023;14(1):3161

Other resources

Plain language summary

Composition of the human gut microbiome has been shown to be associated with chronic diseases such as obesity, however whether they have a causal effect in disease development or whether microbiota composition is a direct result of the disease is unclear. This randomised control trial of 17 individuals aimed to determine the effects of a diet designed to modulate the gut microbiome (MBD) on human energy balance compared to a typical Western style diet (WD). The MBD diet maximised fibre, resistant starch, and limited processed foods and resulted in a significant decrease in the amount of energy produced by individuals compared to the WD. It was also shown that the MBD increased the microbial composition and decreased nutrient breakdown. It was concluded that the MBD increased the amount of gut bacteria and altered the amount of energy produced by individuals on this diet. This study could be used by healthcare practitioners to understand that composition of the gut microbiome can affect the amount of energy gained from food. Diets high in fibre, starch and low in processed foods, which promote microbial diversity may help individuals to lose weight.

Abstract

The gut microbiome is emerging as a key modulator of human energy balance. Prior studies in humans lacked the environmental and dietary controls and precision required to quantitatively evaluate the contributions of the gut microbiome. Using a Microbiome Enhancer Diet (MBD) designed to deliver more dietary substrates to the colon and therefore modulate the gut microbiome, we quantified microbial and host contributions to human energy balance in a controlled feeding study with a randomized crossover design in young, healthy, weight stable males and females (NCT02939703). In a metabolic ward where the environment was strictly controlled, we measured energy intake, energy expenditure, and energy output (fecal and urinary). The primary endpoint was the within-participant difference in host metabolizable energy between experimental conditions [Control, Western Diet (WD) vs. MBD]. The secondary endpoints were enteroendocrine hormones, hunger/satiety, and food intake. Here we show that, compared to the WD, the MBD leads to an additional 116 ± 56 kcals (P < 0.0001) lost in feces daily and thus, lower metabolizable energy for the host (89.5 ± 0.73%; range 84.2-96.1% on the MBD vs. 95.4 ± 0.21%; range 94.1-97.0% on the WD; P < 0.0001) without changes in energy expenditure, hunger/satiety or food intake (P > 0.05). Microbial 16S rRNA gene copy number (a surrogate of biomass) increases (P < 0.0001), beta-diversity changes (whole genome shotgun sequencing; P = 0.02), and fermentation products increase (P < 0.01) on an MBD as compared to a WD along with significant changes in the host enteroendocrine system (P < 0.0001). The substantial interindividual variability in metabolizable energy on the MBD is explained in part by fecal SCFAs and biomass. Our results reveal the complex host-diet-microbiome interplay that modulates energy balance.

Lifestyle medicine

Fundamental Clinical Imbalances : Digestive, absorptive and microbiological
Patient Centred Factors : Mediators/Gut microbiota
Environmental Inputs : Diet ; Nutrients
Personal Lifestyle Factors : Nutrition
Functional Laboratory Testing : Blood ; Stool ; Breath ; Urine ; Imaging

Methodological quality

Jadad score : 2
Allocation concealment : No

Metadata